
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2008; 58:639–658
Published online 19 February 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1772

A pseudospectral Fourier method for a 1D incompressible
two-fluid model

H. Holmås1,∗,†, D. Clamond2 and H. P. Langtangen3,4

1Scandpower Petroleum Technology, P.O. Box 113, 2027 Kjeller, Norway
2Institute for Energy Technology, P.O. Box 40, 2027 Kjeller, Norway
3Simula Research Laboratory, P.O. Box 134, 1325 Lysaker, Norway

4Department of Informatics, University of Oslo, P.O. Box 1080 Blindern, N-0316 Oslo, Norway

SUMMARY

This paper presents an accurate and efficient pseudospectral (PS) Fourier method for a standard 1D
incompressible two-fluid model. To the knowledge of the authors, it is the first PS method developed for the
purpose of modelling waves in multiphase pipe flow. Contrary to conventional numerical methods, the PS
method combines high accuracy and low computational costs with flexibility in terms of handling higher
order derivatives and different types of partial differential equations. In an effort to improve the description
of the stratified wavy flow regime, it can thus serve as a valuable tool for testing out new two-fluid model
formulations. The main part of the algorithm is based on mathematical reformulations of the governing
equations combined with extensive use of fast Fourier transforms. All the linear operations, including
differentiations, are performed in Fourier space, whereas the nonlinear computations are performed in
physical space. Furthermore, by exploiting the concept of an integrating factor, all linear parts of the
problem are integrated analytically. The remaining nonlinear parts are advanced in time using a Runge–
Kutta solver with an adaptive time step control. As demonstrated in the results section, these steps in sum
yield a very accurate, fast and stable numerical method. A grid refinement analysis is used to compare
the spatial convergence with the convergence rates of finite difference (FD) methods of up to order
six. It is clear that the exponential convergence of the PS method is by far superior to the algebraic
convergence of the FD schemes. Combined with the fact that the scheme is unconditionally linearly stable,
the resulting increase in accuracy opens for several orders of magnitude savings in computational time.
Finally, simulations of small amplitude, long wavelength sinusoidal waves are presented to illustrate the
remarkable ability of the PS method to reproduce the linear stability properties of the two-fluid model.
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1. INTRODUCTION

One-dimensional two-fluid models are commonly used to describe multiphase transport of hydro-
carbons in pipe lines. Despite the recent increase in interest for the stratified wavy flow regime,
the prevailing models do not predict the properties of the corresponding large waves satisfactorily.
Since no nontrivial analytical solutions are available, numerical simulations combined with phys-
ical experiments represent the only way to test out improvements in two-fluid models. It is thus
crucial to have accurate numerical methods capable of capturing the true mathematical behavior
of the model equations. By doing so, the physical effects of new mathematical terms can be iden-
tified and compared with experimental observations. While conventional methods often introduce
excessive numerical errors in the solution, pseudospectral (PS) methods [1–3] are known to be
both very accurate and efficient. Furthermore, they are already well established as a successful
numerical tool within, for example, turbulence, meteorology and ocean waves. This paper presents
a PS Fourier method adapted to the 1D incompressible two-fluid model. It is demonstrated that
these methods also have a great potential for modelling waves in multiphase pipe flow.

The main principles used in PS methods were first introduced by Galerkin [4]. When applied to
partial differential equations (PDEs), the main idea is to approximate the solution by a (truncated)
series of differentiable basis functions. The spatial derivatives of this approximation are then evalu-
ated analytically. In essence, this approach ensures that information from the whole computational
domain is included every time a spatial derivative is computed. In finite element and finite differ-
ence (FD) methods, on the other hand, spatial derivatives are computed using information only
from a few neighboring grid points. Finally, the PS spatial scheme is combined with an ordinary
differential equation (ODE) solver in order to march the solution forward in time.

Although many different options exist, the by far most popular choice of basis functions is to
use a Fourier series expansion of the solution. The main advantage of this approach is due to the
superior computational efficiency of the fast Fourier transform (FFT). Kreiss and Oliger [5] and
Orszag [6] were the first to apply PS methods to PDEs. Their approach early became popular within
weather prediction and simulation of turbulence, and these fields have contributed strongly to the
development of new algorithms from the late 1970s up until today. Currently, the main strengths
of the PS methods include exponential as opposed to (much slower) polynomial error decay rates,
minimal dispersive and dissipative errors, and flexibility with respect to treatment of nonlinearities
and higher order derivatives [3]. Moreover, due to the low number of grid points required to uphold
accuracy, very fast and memory efficient algorithms can be constructed. There are, however, still
some unresolved issues related to certain boundary conditions, irregular geometries and strong
shocks in the solutions. All the same, ever more of these limitations are overcome, and the list of
scientific fields that embrace PS methods is continuously growing [7].

The main motivation behind the present work is to provide a numerical framework for testing out
improvements in 1D incompressible two-fluid models for multiphase pipe flow. In particular, the
method should be suitable for simulations of large waves (roll waves) in stratified flow. This flow
regime is observed in laboratory experiments [8], and it is believed to be especially important in
large diameter gas-condensate pipelines. Nevertheless, to our knowledge, there exists no transient
1D two-fluid model that is able to predict stable waves [9]. Since the stability and evolution
of waves are very sensitive to numerical errors, accuracy was the most important property in
our search for a suitable numerical method. The leading commercial simulators for multiphase
pipe flow are mainly based on low-order numerical methods and coarse grids combined with
some sort of tracking schemes [10–12]. Correlations are used to determine the flow regimes, and
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PSEUDOSPECTRAL FOURIER METHOD 641

different flow models are applied in the different regimes. These codes are thus excellent tools
for simulating the flow in long pipelines with complex geometries, but they are not suitable for
predicting the detailed development of waves. Lately, Omgba-Essama [13] and Issa and Kempf
[14] among others have attempted to capture slug initiations by resolving instabilities in two-fluid
models. Their numerical approach is based on using fine grids in combination with first- and
second-order discretizations. While such discretization schemes are more robust with respect to
handling discontinuities in the solutions, it will be shown in this paper that they are not as accurate
and efficient as PS methods when it comes to simulating waves. Finally, Barnea and Taitel [9]
used high-resolution methods based on characteristics to study nonlinear waves in the hyperbolic
region of the two-fluid model. To open for investigation of all flow conditions and higher order
derivatives in the equations, however, it was essential that our method was able to handle all types
of PDEs relevant for two-fluid models. Thereby, all schemes requiring exclusively real and positive
characteristics were ruled out as well.

A PS method was thus considered to be the most attractive alternative. Besides their superior
properties with respect to simulating waves in 1D two-fluid models, PS methods could also be
used to simulate the stratified flow regime in a complete pipe flow simulator. Such an application
is, however, outside the scope of the work presented in this paper. The particular PS algorithm
we have used was preferred due to the success of a similar approach constructed by Fructus et al.
[15] for nonlinear waves in free surface flows. Owing to the different natures of the two problems,
however, significant modifications in the solution strategy were necessary. Although being based
on known concepts, the result is thus a novel numerical method. Furthermore, to our knowledge,
it is the first PS method developed for the modelling of waves in multiphase pipe flow.

Section 2 presents the two-fluid model, for which the PS method has been developed. Addi-
tionally, the Korteweg–de Vries (KdV) equation, which is used as a complementary test case,
is introduced. In the following section, the numerical method is described. A brief overview of
the steps in the algorithm is given first, and thereafter the most central elements are discussed in
further detail. Finally, Section 4 presents the simulation results before the paper is concluded in
Section 5.

2. MODEL EQUATIONS

This section introduces the two wave models that are solved numerically in Section 4. The main
model is a standard 1D incompressible two-fluid model for multiphase pipe flow. To open for
a more complete evaluation of the PS method, however, a simpler two-fluid model called the
Korteweg–de Vries (KdV) equation is considered as well. Similar to the main two-fluid model,
the KdV equation models long waves in shallow water. This similarity together with the fact that
it has a known analytical travelling wave solution makes the KdV equation very suitable as a
numerical test problem. Moreover, the KdV equation also contains a higher order derivative, which
is relevant with respect to inclusion of dissipative or dispersive effects in the two-fluid model.

2.1. The two-fluid model

The incompressible two-fluid model used in this paper consists of two PDEs and two algebraic
relations. This particular formulation was originally derived byWatson [16], but it is mathematically
equivalent to standard two-fluid models used widely in the literature [17, 18]. Note that for typical
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separated flows the speed of the mass waves that we are interested in is about two orders of
magnitude slower than the speed of sound. To study these slow transients, it is thus considered
reasonable to assume local equilibrium in the pressure wave system and use incompressible
models. Any model improvements can subsequently be transferred by analogy to their compressible
counterparts, which must be used in order to describe other important multiphase phenomena such
as severe slugging or flows with more mixing.

The two PDEs consist of the liquid continuity equation

(�l)t +(�lul)x =0 (1)

and the balance equation for the slip momentum

vt +[ 12�lu2l − 1
2�gu

2
g+(�l−�g)hlg cos�]x = S (2)

Here, S denotes the source terms given by

S≡− �lsl
�lA

+ �gsg
�gA

+
(

1

�lA
+ 1

�gA

)
�isi−(�l−�g)(g sin�) (3)

and the slip momentum is defined by v≡�lul−�gug. Subscripts l, g and i represent the liquid
phase, the gas phase and the interface, respectively. Furthermore, � denotes the density, � the phase
fraction, u the velocity, g the acceleration of gravity, h the phase height, A the cross-sectional
area of the pipe, � the shear stress, s the wetted perimeter, and � the pipe inclination (assumed
constant). The notation is illustrated in Figure 1.

The first algebraic equation is the geometric constraint

�l+�g=1 (4)

and the second one is a relation describing the total volume flux of the flow

�lul+�gug=Um(t) (5)

The mixture velocity, Um, is a spatial integration constant and an input parameter to the problem.
For the simulations presented in this paper, it is constant not only in space but also in time.

Figure 1. Sketch of the flow geometry.
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Furthermore, important underlying assumptions of model (1)–(5) include the long wavelength
assumption leading to hydrostatic pressure distributions in the phases, constant phase densities, no
transverse variation of the velocities (plug flow) and no mass transfer.

Using the algebraic relations (4) and (5) together with the definition of the slip velocity, the gas
phase fraction and the velocities can be found as functions of the dependent variables:

�g=1−�l, ul=
v(1−�l)+�gUm

�l(1−�l)+�g�l
and ug= −v�l+�lUm

�l(1−�l)+�g�l
(6)

Finally, closure models must be provided for the shear stresses �l, �g and �i. In the present work, a
friction factor relation based on the single-phase Haaland formula is used. The defining equations
are given in Appendix A, and Espedal [19] can be consulted for a detailed discussion of the model.

For brevity, the following matrix notation will be used throughout the rest of this paper

Wt =A(W) (7)

where W is the vector containing the dependent variables, W≡( �l
v

)
and A is an operator defined by

A(W)≡
( −(�lul)x

−[ 12�lu2l − 1
2�gu

2
g+(�l−�g)hlg cos�]x +S

)
(8)

2.2. The KdV equation

The KdV equation is a model equation for 1D shallow water waves in rectangular channels [20, 21].
In dimensional form, it can be expressed as

�t +c0�x + 1
6c0h0�xxx =− 3

4c0h
−1
0 (�2)x (9)

where � denotes the surface elevation relative to the mean liquid height, h0, and c0≡√
gh0 is

the critical wave speed. A dimensionless form is obtained by scaling the equation with h0 and g.
Technically, the resulting equation corresponds to setting h0=g=1 in (9), and it is this formulation
that is used in the simulations in Section 4.

While the nonlinear term on the right-hand side of (9) drives waves towards breaking, the third-
order dispersive term on the left-hand side tends to stretch the waves out and form wave trains. It
is the balance between these two opposing effects that opens for the travelling wave solution to
the KdV equation. As mentioned, this solution can be obtained analytically, and it takes the form
of a gravity-driven cnoidal wave [20] that propagates downstream without changing shape. The
exact analytical expression for the surface elevation is given in Appendix B. Besides serving as a
benchmark for the numerical solutions to the KdV equation, the cnoidal wave is also used in the
initial conditions for some of the two-fluid model simulations in Section 4.

3. NUMERICAL ALGORITHM

This section presents our PS numerical method for the incompressible two-fluid model defined
by (7). Since descriptions of similar PS methods for the KdV equation already exist in the
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Figure 2. Schematic illustration of the steps in the PS method. Subscript t denotes time derivatives,
subscript n+1 indicates the next time step, apostrophes indicate the varying parts of variables and hats

are used for variables in Fourier space.

literature [2, 22]; that procedure will not be described here. Nonetheless, by analogy most of the
implementations for the KdV equation follow the two-fluid model algorithm.

Partly based on the ideas introduced by Fornberg and Whitham [22], Fructus et al. [15]
constructed a very fast and accurate PS method for nonlinear ocean waves. In essence, many
of the same steps are used in the numerical method presented here, but several modifications of
the numerics and the model itself are necessary in order to adapt the approach to the two-fluid
model. In contrast to the model equations for ocean waves, linear and nonlinear effects are not
separated in standard two-fluid models. Since an important part of the solution strategy is to solve
the linear parts analytically, our method has an extra initial step mainly concerned with extracting
the linear terms from (7). Furthermore, the solution strategy is to a great extent based on mathe-
matical reformulations. These reformulations thus have to be derived for the two-fluid model, and
many adjustments must be made throughout the numerical method. Hence, the result is a new PS
algorithm customized for the simulation of waves in multiphase pipe flow.

Figure 2 visualizes the main steps in this PS method. As mentioned, the equation set is first
split into linear and nonlinear terms. Thereafter, the nonlinear operations are carried out before
the equation set is transformed into Fourier space. This transformation indirectly takes care of
the periodic boundary conditions as well as the spatial derivatives, which in Fourier space are
computed by simple multiplications. Next, a change of variables that ensures that the analytical
integration of the linear parts of the system is applied. In order to avoid instabilities caused by
the nonlinear operations, a cut-off is applied to the high frequencies of the solution. After this
so-called anti-aliasing procedure, the remaining nonlinear parts are marched forward in time using
a fifth-order Runge–Kutta method with adaptive time stepping. Finally, the solution at the next
time step is obtained by reversing the change of variables and transforming back to physical space.
The rest of this section discusses these steps in further detail.

3.1. Splitting of linear and nonlinear terms

Inspection of (7) reveals that all terms except the temporal derivatives and the gravity term are
nonlinear with respect to the dependent variablesW. Further linear parts can, however, be extracted
by reformulating the original equations. To do so, first-order Taylor expansions about a mean
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state are employed. The dependent variables are first rewritten as a sum of this mean state and a
deviation

W≡W0+W′ ≡
(

�l0

v0

)
+
(

�′
l

v′

)
(10)

In view of the numerical method, the mean state,W0, must be constant in space, but not necessarily
in time. However, due to the physics involved in this particular problem (constant mixture velocity
and periodic boundary conditions), the mean state is constant in both space and time. Furthermore,
this constant is dictated by the initial conditions, and in all simulations presented in this paper it will
correspond to the uniform steady-state solution to (7). Since the temporal and spatial derivatives
of W0 thus equal zero, the deviations, W′, become the new dependent variables of the equation
system. Such a formulation not only minimizes the round-off errors but also better reflects the
physical behavior of the flow.

Next, first-order Taylor expansions are applied to the rest of the variables in order to extract
all the terms that are linear in the new dependent variables. The remainders of the expansions
are retained in the equations and treated as nonlinear terms. Hence, the resulting equation set is
mathematically identical to (7). The only difference is that the operator A has been split into a
linear operator, L, and a nonlinear operator, N (see Equation (13)).

In the liquid continuity equation (1), the only variable that needs to be expanded is the liquid
velocity

ul=ul0+u′
l=ul0+�′

l

(
�ul
��l

)
W0

+v′
l

(
�ul
�vl

)
W0

+Rul (11)

Here, ul0≡ul(W0) and Rul denotes the remainder of the expansion. The short-form notation u′
l is

used in terms that are nonlinear in the dependent variables. Furthermore, the expressions for the
derivatives can be found from the algebraic relations in (6), and the subscript W0 indicates that
they are to be evaluated at the uniform steady-state conditions.

Introducing the notation from (10) and (11), the liquid continuity equation is rewritten as

��′
l

�t
+
[
�l0

(
�ul
��l

)
W0

�
�x

+ul0
�
�x

]
�′
l+
[
�l0

(
�ul
�v

)
W0

�
�x

]
v′ =−�u′

l�
′
l

�x
−�l0

�Rul

�x
(12)

in which the nonlinear terms are collected on the right-hand side. Having extracted all the linear
terms, (12) is now transformed into Fourier space. There, the first-order spatial derivatives are
computed by multiplying the transformed variable with ik, where i2=−1 and k is the wave
number. Note that periodic boundary conditions are automatically taken care of when using Fourier
transforms. Other boundary conditions can be implemented by using transforms with a different
set of basis functions [2].

After applying the same approach to the slip momentum equation (2), the equation set becomes

Ŵ
′
t + L̂Ŵ

′ = N̂(W′) with L̂=
[
l̂11 l̂12

l̂21 l̂22

]
and N̂(W′)=

[
n̂1

n̂2

]
(13)

where the hats indicate Fourier transforms. The expressions for the linear operator L̂ and the
nonlinear operator N̂(W′) are given in Appendix C.
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3.2. Integrating factor

In order to integrate the linear terms in (13) analytically, a change of variables using an integrating
factor is applied [2, 23]. Besides improving the accuracy, the main gain of the integrating factor
approach is that the system becomes unconditionally linearly stable. Especially when higher order
derivatives are involved, the computational time can thus be reduced by several orders of magnitude
(see Section 4.2).

The following new variables are introduced:

U≡E+Ŵ
′ ⇔ Ŵ

′ =E−U (14)

where

E± ≡exp[±L̂(t− t0)] with E± =
[
e±11 e±12

e±21 e±22

]
(15)

is known as the integrating factor. In the numerical algorithm, t denotes the current time, and t0
denotes the time at the beginning of the current time step. Since numerical computation of the
exponential of a matrix is costly, the analytical expressions for the elements in E± are used instead
(see Appendix D). Finally, (14) is inserted into (13), and all linear parts cancel. The result, after
some rearranging, is the following ODEs:

Ut =E+N̂(W′) (16)

A few remarks to (16) are in place. First of all, the terms in L̂ are constant in time and thus
have to be computed only once. The terms in N̂(W′), on the other hand, are functions of the
dependent variables and must thus be reevaluated at each time step. Furthermore, no linear terms
have been extracted from the source terms (3) in the slip momentum equation. Owing to the
complex algebraic relations in the friction terms, it would be necessary to compute the resulting
derivatives numerically. This procedure has been tried out, but the effects on the horizontal flow
simulations presented in this paper were insignificant. The reason is probably a combination of the
friction terms being dominated by nonlinear effects and the inaccuracy in the approximations of
the derivatives. Finally, we would like to stress the importance of making sure that the mean of the
initial conditions really corresponds to the mean state W0. Any deviations would introduce errors
in the Taylor expansions resulting in a loss of both accuracy and stability. In the simulations in
Section 4, this issue is taken care of by using only initial perturbations on the uniform steady-state
solutions that have zero mean values.

3.3. Anti-aliasing

At this point no further mathematical reformulations are feasible, and Equation (16) is integrated
numerically. Before presenting the ODE solver, however, we will first describe the anti-aliasing
procedure [1, 2], which is used throughout the numerical method. The purpose of this procedure
is to control the aliasing errors introduced by nonlinear computations on discrete grids. Consider,
for example, the multiplication of two functions in physical space. In the continuous case, such an
operation corresponds to a convolution in Fourier space, whereas in the discrete case, it corresponds
to a circular convolution. In other words, the discretization of a product is not the same as the
product of discretized functions. The resulting aliasing errors manifest themselves by destabilizing
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PSEUDOSPECTRAL FOURIER METHOD 647

high wave numbers in the discretized solution spectrum. Note that aliasing errors is not something
peculiar to PS methods. However, most other schemes also introduce so much numerical dissipation
that all the energy at high wave numbers is damped. The aliasing errors are thus eliminated, but
so are parts of the physics.

An attractive anti-aliasing procedure for 1D simulations, which are not memory intensive, is to
extend the high wave number part of the solution spectrum by zeros padding [2]. For a nonlinearity
of order rn , the required extension of the spectrum is by a factor of (rn+1)/2. It is troublesome to
find the order of all the nonlinearities in (16). However, our conclusion after careful investigations
of different solution spectra is that application of the 4

2 -rule [2, 15] is sufficient to suppress the
aliasing errors. The strategy we have used for nonlinear operations thus consists of two parts,
which are both carried out for every nonlinear operation at every time step. Since multiplications
are much faster to compute than convolutions, all nonlinearities are first evaluated in physical
space. Thereafter, the solution is transformed into Fourier space, and the upper half of its spectrum
is set equal to zero. Many transforms between the two spaces are thus necessary. Thanks to the
speed of the FFT algorithms, however, the computational cost is minimal.

3.4. Numerical integration

Many suitable ODE solvers exist in the literature [24]. In order to solve (16) in a satisfactory way,
there are especially two properties that the solver should possess. Firstly, a medium-to-high range
accuracy is required so that the accuracy of the spatial discretization is not deteriorated. Secondly,
an adaptive step size control should be used. This feature is quite effortless to implement, and it
can reduce the computational time substantially [25].

Based on these criteria, we have chosen to use a well-known Runge–Kutta method by Dormand
and Prince [26]. It is a six stage, fifth-order explicit method with an embedded fourth-order scheme
for the time stepping control. Note that when using the integrating factor, it is important to make
sure that all variables are updated at each substep before (16) is used to calculate the temporal
derivatives. For the time stepping, a proportional integral (PI) controller is used [27]. The estimated
time step size is given by

�tn+1 =�tn

(
1

errn

)a(errn−1

errn

)b

(17)

in which the constants a and b are subject to tuning. In the simulations presented here, a=0.3/p
and b=0.4/p as recommended by Gustafsson [28]. The parameter p denotes the order of the
scheme, which in our case is p=5. Furthermore, the error estimates are calculated from

errn =
√√√√ 1

2J

2∑
i=1

J∑
j=1

{
Un(i, j)−U4th

n (i, j)

TOL+max[Un(i, j),Un−1(i, j)]·TOL

}2

(18)

Subscripts n−1, n and n+1 indicate the time steps, superscript 4th represents the fourth-order
embedded scheme, TOL denotes the tolerance in the Runge–Kutta solver and J is the total number
of grid points in the simulation. As can be seen in (17), the PI controller, in contrast to traditional
integral (I) controllers, includes the error estimates from both the current and the previous time
steps when estimating the next time step size. Owing to the stiffness of multiphase flow problems,
such a stabilization technique is very advantageous. By providing improved estimates of the step
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sizes, it can significantly reduce the number of rejected time steps and thereby also reduce the
total computational time.

After each time step, Equation (14) is used to reverse the change of variables. Thereafter, the
phase fractions and velocities are obtained by applying inverse FFT algorithms followed by the
relations in (6). Thus, all terms at the new time step can be calculated, and the solution can be
marched further forward in time.

4. SIMULATION RESULTS AND DISCUSSIONS

Through comparisons with a range of FD schemes, this section demonstrates the superior accu-
racy and efficiency of the PS method. The simulations are set up to model the flow of water
(�l=998kg/m3, �l=10−3 Pas) and sulfurhexafluoride (�g=50kg/m3, �g=1.61×10−5 Pas) in a
horizontal pipe with a diameter D=0.1 m. Furthermore, the length of the periodic computational
domain is 100D, and the initial conditions are given by the uniform steady-state solution to (7)
superposed by a zero mean perturbation. The flow rates and the form of the initial perturbations,
however, vary among the different simulation cases. In order to enable comparison with an analyt-
ical solution and to demonstrate the efficiency of the integrating factor, some simulations with the
KdV equation are included as well.

The FD schemes used as the basis for comparison are of orders 1, 2, 4 and 6. They use the
same Runge–Kutta solver as the PS scheme, but the change of variables described in Section 3.2
is not included. While the spatial derivatives in the first-order scheme are discretized with ordinary
backward differences, the spatial derivatives of the higher order schemes are computed in Fourier
space. Thus, much of the code structure from the PS method is reused, and the comparisons
become both more reliable and easier to implement. The Fourier versions of the ordinary central
differences [3] are obtained by repeatedly employing the following formula:

F{ f (x−a�x)}=exp(−ia�x)F{ f (x)} (19)

where f is some arbitrary function, a is a constant and F denotes the Fourier transform. All parts
of the code have been implemented in the Matlab programming language. The standard library
functions fzero, fft and ifft have been used to compute the uniform steady-state solution
for the initial conditions, the FFTs and the inverse FFTs, respectively.

4.1. Accuracy and convergence

To analyze the accuracy and convergence rate of the PS scheme, simulations of both the two-fluid
model and the KdV equation are used. In both cases an initial cnoidal wave is propagated a distance
corresponding to twice the length of the periodic computational domains. For the two-fluid model
simulations, the flow rates correspond to conditions for which Johnson [8] in his experimental
work observed a stratified flow regime with roll waves. In particular, the superficial liquid velocity
is usl=0.4m/s, and the superficial gas velocity is usg=2.0m/s (see Figure 6(a)).

Figure 3 shows the qualitative behavior of the simulation results with 64 grid points. Panels a and
b represent the KdV equation, whereas Panels c and d represent the two-fluid model simulations.
Furthermore, Panels a and c show the temporal evolution of the PS solutions, whereas Panels b and
d compare the final solution profiles of the different numerical methods. From Panel b it is evident
that despite the low number of grid points, the PS method approximates the analytic solution to
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(a) (b)

(c) (d)

Figure 3. Temporal evolution of the PS simulations and sections of the final surface profiles for the KdV
equation (Panels a and b) and the two-fluid model (Panels c and d), respectively. In all simulations, 64
grid cells were used, and the initial cnoidal wave was propagated about twice the distance of the periodic
computational domain corresponding to 100h0 for the KdV equation and 200D for the two-fluid model.

The dimensionless times are defined by t∗∗ ≡ t/
√
gh0 and t∗ ≡ t/(D/Um).

the KdV equation well. It is hard to visually distinguish the PS method and the sixth-order FD
method, but the rest of the FD methods clearly yield poorer results. Especially striking is the extent
to which the first-order method smears out the solution and the considerable oscillations in the
second-order solution.

While the initial wave essentially retains its shape throughout the simulation for the KdV
equation, it can be seen in Panel c that the wave in the two-fluid model simulation both grows
and gets closer to breaking. In fact, if the simulations were allowed to continue, the numerics
would eventually blow up due to the developing shock discontinuity. As for the KdV equation, it
is hard to distinguish the final holdup profiles of the PS and the sixth-order method in Panel d.
Furthermore, the rest of the FD methods have the same tendency to smear out the solution and
underpredict the phase speed.

A more quantitative analysis of the convergence rates is shown in Figure 4. An error estimate is
calculated based on the final surface profiles in Figure 3, and a grid refinement analysis is carried
out. The error estimate is defined by

�(J )≡
√√√√ 1

J

J∑
j=1

|vb( j)−vJ ( j)|2 (20)

where vJ denotes the final surface vector with J grid points, and vb is the benchmark solution
vector. For the KdV equation, the benchmark is given by the analytical solution to the surface
elevation �. For the two-fluid model, on the other hand, a very refined PS numerical solution (5000
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(a) (b)

(c) (d)

Figure 4. Plots of the error estimates and tables containing the convergence rates for the KdV simulations
(Panels a and b) and the two-fluid model (Panels c and d). The algebraic order of convergence, p, is

defined by (21), and the exponential convergence factor, q , is defined by (22).

grid points) to the holdup �l is used. Once again the results for the KdV equation are given in
Panels a and b, and the results for the two-fluid model are given in Panels c and d.

Based on the diagrams in Panels a and c, it is clear that the convergence rate of the PS method
is by far superior to the rest of the schemes. Actually, the error for the PS method diminishes at an
exponential rate, which is much faster than the algebraic rates obtained by FD methods. In order
to quantify the convergence rates, the estimated order of convergence for each refinement interval
is computed. The algebraic orders are defined as p in the following relations [2]:

�J ∝ 1

J p
for J →∞ (21)

Since logarithmic scales are used, the algebraic orders correspond to the asymptotic slopes of the
curves for large J . The exponential convergence factor, on the other hand, is defined by q in the
following relations [2]:

�J ∝exp(−cJq) for J →∞ (22)

with c representing some constant.
The results of the computations are reported in the tables on the right-hand side of Figure 4. As

anticipated, the orders of convergence for the FD methods approach their respective discretization
orders for increasing J . The p-values for the PS method are reported in the tables as well. It can be
seen that these values are continuously increasing with J , which explains why PS methods often
are referred to as infinite order methods. A more proper measure of the exponential convergence,
however, is provided by the q-values. An exponential convergence factor q=1 indicates geometric
convergence, whereas q<1 and q>1 indicate subgeometric and supergeometric convergences,
respectively. When approximating a smooth and infinitely differentiable solution, a PS method
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would be expected to exhibit geometric or supergeometric convergence for large J [1, 2]. Indeed,
it can be seen in Panel b that geometric convergence is obtained for the smooth KdV solution.
For the two-fluid model, on the other hand, only subgeometric convergence is achieved due to
the developing shock discontinuity in the solution. Nevertheless, as Figure 4 demonstrates, such
a subgeometric exponential convergence rate is still much faster than the conventional algebraic
convergence rates. Finally, note that the tolerance in the Runge–Kutta solver for these simulations
was set to 10−14 (restricted by machine precision). Further grid refinement would thus cause the
PS curve to level out, and no additional gain in accuracy would be achieved.

4.2. Computational time

For the prediction of multiphase flow in pipelines, the point of using highly accurate numerical
schemes is not to reduce the numerical error to machine precision. It is rather to reduce the number
of grid points and time steps necessary to resolve the physics to a level of detail consistent with the
model assumptions. Figure 5 illustrates this point. In Panel a, the final holdup profiles of the PS
and the first-order FD method from the previous subsection are replotted. In addition, three more
refined solutions with the first-order method are included. To obtain the same level of accuracy
with the first-order method as with the PS method with 64 grid points, the graph indicates that a
roughly 300 times finer mesh must be used. Naturally, such a refinement is expensive in terms of
both memory and computational time. For these particular simulations, the computational time for
the PS method was only 5% higher than that for the first-order method with the same refinement.
The computational time for the first-order method with 20 000 grid points, on the other hand, was
more than 10 000 times higher. In other words, a reduction in the computational time by four
orders of magnitude was obtained by using the PS method instead of the widespread first-order
method with comparable accuracy.

Panel b in Figure 5 demonstrates an effect of the integrating factor, which is especially important
when solving problems involving higher order derivatives. Since the two-fluid model defined by (7)
contains only first-order derivatives, the KdV simulation case from the previous subsection is used
for illustration. Note, however, that there exist many two-fluid model formulations that include
higher order derivatives, for which this effect is highly relevant. The graph in Figure 5(b) displays

(a) (b)

Figure 5. Panel a: Holdup profiles after the initial wave in the two-fluid model simulations has been
propagated about 200D. Panel b: Computational time as a function of the number of grid points for the
KdV equation. The PS method with (w.i.f.) and without (wo.i.f.) the integrating factor is used combined
with tolerances corresponding to TOL=10−7 and 10−14. The computations were performed with an

Intel Pentium M 2.0GHz processor.
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a comparison of the computational time for the PS method with (w.i.f.) and without (wo.i.f) the
integrating factor. All simulations have been run twice with the tolerance in the Runge–Kutta solver
set to TOL=10−7 and 10−14, respectively. For the simulations with coarser grids, it is clear that the
tolerance governs the computational time. As the grid is refined, however, the computational time
increases dramatically for the simulations without the integrating factor regardless of the tolerance
level. This increase can be explained by considering the linear stability of the numerical method.
Owing to the third-order derivative in (9), linear stability normally requires that the time step size
varies with the number of grid points as �t∝ J−3. In the simulations including the integrating
factor, on the other hand, the linear parts of the problem are solved analytically. Thus, the method
is unconditionally linearly stable, and much longer time steps can be used. Although each time
step with the integrating factor demands a little extra work, the net result for refined grids is still
a substantial save in the total computational time.

Finally, we would like to point out that the integrating factor approach increases accuracy
and stability for problems not including higher order derivatives as well. Although the effect is
not as pronounced as in Figure 5(b), the computational efficiency can be significantly improved,
particularly for stiff problems that are dominated by linear terms. All in all, the combination of
a more accurate spatial discretization, the analytic solution of linear terms, and the optimized
time-integrator thus provides a substantial reduction in computational time for our PS method
compared with conventional numerical methods.

4.3. Linear stability

This subsection investigates the ability of the PS method to reproduce the physical linear stability
properties of the two-fluid model. A Kelvin–Helmholtz stability analysis has been carried out by
first perturbing the steady-state solution with Fourier modes on the form exp[i(kx−�t)] with k
denoting the wave number and � denoting the frequency. Thereafter, the system is linearized and
the resulting dispersion relation is solved for the amplification factors, Im(�). Positive amplification
factors indicate unstable conditions and vice versa. Three simulation cases referred to as Cases a,
b and c have been selected. As initial conditions, all cases use a small-amplitude, long-wavelength
sinusoidal perturbation with a wavelength, 	, that covers the full length of the computational domain
(100D). The flow rates are indicated in the flowchart in Figure 6(a) together with the simulation
case used in the previous analysis and the viscous (VKH) and inviscid (IKH) Kelvin–Helmholtz
lines. Cases a, b and c are situated right above, on, and directly below the VKH line, which
constitutes the linear neutral stability criterion for the two-fluid model. The initial perturbation
is propagated about 25 wavelengths, and the amplitude of the holdup (amp�) is monitored to
investigate the evolution of the wave. The amplitude is calculated at each time step by taking the
Fourier transform of the holdup vector and extracting the magnitude of the Fourier component
corresponding to the wavelength of the initial perturbation (	=100D).

Panel b in Figure 6 shows the evolution of the normalized amplitude for the PS and the first-order
FD methods with 64 grid points. The initial decrease in amplitude observed for all simulation
cases is due to the fact that the sinusoidal wave is not a solution to the two-fluid model. It thus
takes some time for the long-term trends of the simulations to be established. Apart from this
initial disturbance, the PS method predicts the wave to behave as anticipated based on the linear
stability criterion. In Case a, the wave slowly grows until the amplitude is a bit more than doubled
at the end of the simulation. Furthermore, the wave amplitude remains constant in Case b and
decreases slowly in Case c. For the first-order method, on the other hand, numerical diffusion
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(a) (b)

Figure 6. Panel a: Flowchart indicating simulation cases a, b and c together with the simulation case used
in the previous subsections and the viscous (VKH) and inviscid (IKH) Kelvin–Helmholtz lines. Panel b:
The evolution of the normalized wave amplitude as a function of the distance travelled for the different

cases simulated with the PS and the first-order FD methods.

(a) (b)

Figure 7. Panel a: Convergence plot of the estimated amplification factor computed after the wave has
propagated about eight wavelengths. Panel b: Development of the estimated amplification factor for Case
a as a function of wavelengths travelled for two different grid refinements for the PS method compared

with the result of the VKH analysis.

totally dominates the behavior. In all three cases, the wave dies out relatively quickly, suggesting
that the method predicts the wrong qualitative behavior of the two-fluid model.

Figure 7 compares an estimated amplification factor obtained from the nonlinear simulations,
�i, with the amplification factor from the linear VKH analysis, Im(�). The estimated amplification
factor is computed with the relation

�i

(
tn+ tn−1

2

)
=

ln

(
amp�(tn)

amp�(tn−1)

)
tn− tn−1

(23)

For Cases a, b and c, the VKH analysis yields amplification factors of 5.4×10−3 s−1, 0.0×10−3 s−1

and −4.4×10−3 s−1, respectively. In Figure 7(a), �i at the time when the initial perturbation has
travelled about eight wavelengths is plotted versus the grid refinement. While the first-order method
substantially underpredicts the amplification factor even with 200 grid points per wavelength, the
PS method provides accurate predictions with much coarser grids. In fact, the PS method with
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only 10 grid points yields an estimated amplification factor that in each case is less than 10−5 s−1

different from the value predicted by the linear analysis. Figure 7(b) shows the development of
�i in the initial part of simulations of Case a with two different refinements of the PS method.
In both simulations, the estimated amplification factor has converged to a value very close to
the value obtained from the VKH analysis when the wave has travelled about three wavelengths.
Furthermore, it is noteworthy that the PS method with 10 and 100 grid points yields almost
identical results. This behavior is readily explained by the fact that most of the operations in PS
methods are performed in Fourier space, in which the variables are represented by trigonometric
series. Since these particular simulations are only weakly nonlinear and since the initial conditions
contain only one frequency, not much is gained by adding extra grid points beyond the amount
required to resolve this frequency.

The results in this section illustrate the importance of using sufficiently accurate numerical
methods when testing the performance of wave models. Only in this way, one can be sure that
the numerical results reflect the true nature of the physical models. Furthermore, it has been
demonstrated that for sufficiently smooth solutions, the proposed PS method provides the desired
accuracy at substantially lower computational cost compared with conventional FD-based schemes.

5. CONCLUSION

A pseudospectral (PS) Fourier method has been developed for the simulation of waves in multiphase
pipe flow. The numerical method is implemented for a standard 1D incompressible two-fluid model,
and it is based on mathematical reformulations combined with extensive use of FFTs. First, the
linear parts of the problem are extracted and solved analytically by using a change of variables
involving an integrating factor. Thereafter, the nonlinear parts are transformed into Fourier space, in
which their spatial derivatives are calculated by a simple multiplication. In order to avoid aliasing
errors due to the discrete computation of nonlinear terms, the high-frequency part of the solution
spectrum is padded with zeros. The resulting, nonlinear equations are advanced in time using a
fifth-order Runge–Kutta algorithm with an adaptive step size control. Finally, the physical variables
at the next time step is obtained by reversing the change of variables and applying an inverse FFT.

The simulations presented in Section 4 compare our PS method with conventional schemes
based on finite difference (FD) discretizations of orders 1, 2, 4 and 6. Besides the simulations of the
incompressible two-fluid model, the simpler KdV equation is used to verify the reliability of the
implementation and the performance of the numerical method. The rapid exponential convergence
rate of the PS method is demonstrated by the means of a grid refinement analysis. The unparalleled
accuracy combined with the unconditional linear stability of our PS algorithm opens for vast
reductions in computational time. For a simple wave propagation case, the computational cost is
cut by four orders of magnitude compared with the first-order method. Note that such first-order
methods constitute the industrial standard in present multiphase flow simulators. Finally, three
simulation cases close to the linear neutral stability criterion of the two-fluid model are presented.
In contrast to the first-order method, the PS method reproduces the anticipated behavior in all
cases even with a relatively coarse grid.

All in all, the simulations demonstrate that our PS method is able to very accurately and
effectively capture the evolution of waves. It is virtually free of both dissipative and dispersive
errors making it possible to reduce the number of grid points and thus the computational time to
a minimum. Furthermore, the algorithm is easily extended to include new terms and is therefore,
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in our opinion, an ideal tool for testing improvements in the description of waves in two-fluid
models.

APPENDIX A: FRICTION MODEL

The friction model is defined by the following correlations, where s indicates the wetted perimeters
and subscript f =l,g represents the liquid and the gas phases, respectively. More details on the
model can be found in Espedal [19].

Shear stresses are given by

� f ≡ 1
8 f f � f u f |u f | and �i≡ 3

8 fg�g(ug−ul)|ug−ul| (A1)

Friction factors are given by

f f ≡max

⎧⎨⎩
[
1.8log10

(
6,9

Re f

)
+
(

�

3.7DH, f

)1.11
]−2

,
64

Re f

⎫⎬⎭ (A2)

Reynolds numbers are given by

Re f ≡ � f u f DH, f

� f
(A3)

Hydraulic diameters

DH,l≡ 4�lA

sl
and DH,g≡ 4�gA

sg+si
(A4)

In this paper the wall roughness, �, has been set to 2×10−5m.

APPENDIX B: CNOIDAL WAVE

The cnoidal wave, which is an analytical travelling wave solution to the KdV equation, is given by

�=a
[dn2(
�,m)]−E/K

1−E/K
(B1)

where a denotes the amplitude relative to the mean surface level and m∈[0,1] is a parameter
that controls the shape of the wave. For small m, (B1) becomes sinusoidal, whereas in the limit
m→1 (B1) becomes a solitary wave. K and E are the complete elliptic integrals of the first and
second kinds, respectively, and dn is the Jacobi elliptic function. The coordinate � is defined by
�≡ x−ct−�, where � is the constant phase shift. The wave speed, c, is calculated using

c=√gh0

[
1+ a(2−m−3E/K )

2h(1−E/K )

]
(B2)

Finally, 
 is given by 
≡2K/	 where 	 denotes the wavelength.
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APPENDIX C: LINEAR AND NONLINEAR OPERATORS

The elements in the linear operator L̂ are given by

l̂11≡
[
�l0

(
�ul
��l

)
W0

+ul0

]
ik (C1)

l̂12≡�l0

(
�ul
�v

)
W0

ik (C2)

l̂21≡
[
�lul0

(
�ul
��l

)
W0

−�gug0

(
�ug
��l

)
W0

+(�l−�g)g cos�

(
�hl
��l

)
W0

]
ik (C3)

l̂22≡
[
�lul0

(
�ul
�v

)
W0

−�gug0

(
�ug
�v

)
W0

]
ik (C4)

and the elements in the nonlinear operator N̂ are defined by

n̂1(W
′)≡[−̂(u′

l�
′
l)−�l0 R̂ul]ik (C5)

n̂2(W
′)≡[−�lul0 R̂ul − 1

2�lû
′2
l +�gug0 R̂ug + 1

2�gû
′2
g −(�l−�g)g cos�R̂hl]ik+ Ŝ (C6)

The expressions for the derivatives in L̂ are obtained analytically using the two algebraic relations
(4) and (5), and the subscript W0 indicates that they should be evaluated at the steady-state
conditions. R
 represents the remainder of a first-order Taylor expansion of 
′, and it is defined by

R
 ≡
′−�′
l

(
�


��l

)
W0

−v′
(

�


�v

)
W0

(C7)

APPENDIX D: ELEMENTS IN E±

The elements in the integrating factor matrixes E± are defined by

e±11≡ 1
2e

±1/2ť(l̂11+l̂22)[2cosh(± 1
2 ť

√
d)± ť(l̂11− l̂22)sinhc(± 1

2 ť
√
d)] (D1)

e±12≡ ť e±(ť
√
d/2)±1/2ť[−√

d+l̂11+l̂22]
12 l̂ sinhc(± 1

2 ť
√
d) (D2)

e±21≡ ť e±(ť
√
d/2)±1/2ť[−√

d+l̂11+l̂22]
21 l̂ sinhc(± 1

2 ť
√
d) (D3)

e±22≡ 1
2e

±1/2ť(l̂11+l̂22)[2cosh(± 1
2 ť

√
d)± ť(−l̂11+ l̂22)sinhc(± 1

2 ť
√
d)] (D4)

where the l̂i j are the elements of the linear matrix given in Appendix C. Furthermore, ť≡(t− t0)
and the discriminant d≡4l̂12l̂21+(l̂11− l̂22)2. Finally, the function sinhc(x) is used in order to
remove apparent singularities for ť

√
d=0. In general, it is in defined as

sinhc(x)≡ x−1 sinh(x), |x |>5×10−3 (D5)
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while for small x a fourth-order Taylor series expansion is used to redefine the function as

sinhc(x)≡1+x2( 16 + 1
120 x

2), |x |<5×10−3 (D6)

which is accurate to machine double precision.
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